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Abstract. We provide an alternative to the gauge covariant horizontality condition, which is responsible for
the derivation of the nilpotent (anti-) BRST symmetry transformations for the gauge and (anti-) ghost fields
of a (3+1)-dimensional (4D) interacting 1-form non-Abelian gauge theory in the framework of the usual su-
perfield approach to the Becchi–Rouet–Stora–Tyutin (BRST) formalism. The above covariant horizontality
condition is replaced by a gauge invariant restriction on the (4, 2)-dimensional supermanifold, parame-
terised by a set of four spacetime coordinates, xµ(µ= 0, 1, 2, 3), and a pair of Grassmannian variables, θ and
θ̄. The latter condition enables us to derive the nilpotent (anti-) BRST symmetry transformations for all the
fields of an interacting 1-form 4D non-Abelian gauge theory in which there is an explicit coupling between
the gauge field and the Dirac fields. The key differences and the striking similarities between the above two
conditions are pointed out clearly.

PACS. 11.15.-q; 12.20.-m; 03.70.+k

1 Introduction

The celebrated horizontality condition plays a key role in
the usual superfield approach [1–11] to the BRST formal-
ism when the latter is applied to the p-form (p= 1, 2, 3, . . . )
(non-) Abelian gauge theories. To be more specific and
precise, in the framework of the usual superfield approach
to a given D-dimensional p-form Abelian gauge theory,

a (p+1)-form super curvature F̃ (p+1) = d̃Ã(p) is con-
structed with the help of the super exterior derivative

d̃ = dxµ∂µ+ dθ∂θ+ dθ̄∂θ̄ (with d̃
2
= 0) and the super

p-form connection Ã(p) on a (D, 2)-dimensional super-
manifold, which is parameterised by the D-number of the
commuting spacetime variables xµ (with µ= 0, 1, 2 . . .D−
1) and a pair of anticommuting Grassmannian vari-
ables θ and θ̄ (i.e. θ2 = θ̄2 = 0, θθ̄+ θ̄θ = 0). This su-
per curvature is subsequently equated to the ordinary
(p+1)-form curvature F (p+1) = dA(p) of the given D-
dimensional Abelian p-form gauge theory, which is con-
structed with the help of the ordinary exterior derivative
d = dxµ∂µ (with d

2 = 0) and the ordinary p-form con-
nection A(p). The process of the reduction of the (p+
1)-form super curvature to the ordinary (p+1)-form cur-
vature (through the equality F̃ (p+1) = F (p+1)) is known
as the horizontality condition, which has been chris-
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tened as the soul-flatness condition1 by Nakanishi and
Ojima [12].
The horizontality condition has also been applied to

the physical 1-form non-Abelian gauge theory [4–7], where
the super 2-form curvature F̃ (2) = d̃Ã(1)+ iÃ(1) ∧ Ã(1),
constructed with the help of the super exterior derivative
d̃ and the super 1-form connection Ã(1) (by exploiting
the Maurer–Cartan equation), is equated to the ordinary
non-Abelian curvature 2-form F (2) = dA(1)+ iA(1) ∧A(1)

(where the ordinary exterior derivative d = dxµ∂µ and
the ordinary 1-form connection is A(1) = dxµAµ). As it is
evident from our earlier discussion, the super 2-form cur-
vature F̃ (2) is defined on the (4, 2)-dimensional supermani-
fold, and the ordinary 2-form curvature F (2) is constructed
on the ordinary 4D spacetime manifold. The key point to
be noted is that the horizontality condition is a covariant
restriction on the gauge superfield of the (4, 2)-dimensional
supermanifold, because the ordinary 2-form curvature
transforms covariantly under the non-Abelian gauge trans-
formation. This condition has also been exploited in the
context of the usual superfield approach to BRST symme-
tries for gravitational gauge theories [6, 7].

1 This condition primarily amounts to setting equal to
zero all the Grassmannian components of the (p+1)-rank
(anti) symmetric curvature tensor that constitutes the (p+

1)-form super curvature F̃ (p+1). The latter is defined on the
(D, 2)-dimensional supermanifold.
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One of the most striking features of the horizontality
condition is the fact that it leads to the derivation of the
nilpotent (anti-) BRST symmetry transformations for the
gauge and (anti-) ghost fields of the Lagrangian density
of an interacting non-Abelian gauge theory. It does not
shed any light, however, on the derivation of the nilpotent
(anti-) BRST symmetry transformations associated with
the matter (e.g. Dirac) fields of the above interacting non-
Abelian theory. Furthermore, it provides the geometrical
origin and interpretations for

(i) the existence of the (anti-) BRST symmetry trans-
formations and corresponding (anti-) BRST charges,

(ii) the nilpotency property associated with the (anti-)
BRST charges (and the (anti-) BRST symmetry
transformations they generate), and

(iii) the anticommutativity property of the (anti-)
BRST charges and corresponding symmetry
transformations.

These beautiful geometrical interpretations, however,
remain confined to only the gauge and (anti-) ghost fields
of the (non-) Abelian theories. The above horizontality
condition has recently been augmented [13–22] so that
one could derive the nilpotent (anti-) BRST symmetry
transformations associated with all the fields of given
(non-) Abelian gauge and/or reparametrisation invari-
ant theories. These extended versions have been chris-
tened as the augmented superfield approach to the BRST
formalism [13–22], where, in addition to the horizontal-
ity condition, a set of new restrictions is imposed on the
appropriately chosen superfields of the supermanifolds.
For instance, one invokes the equality of (i) the conserved
quantities [13–19], and (ii) the gauge (i.e. BRST) invariant
quantities (that owe their origin to the (super) covari-
ant derivatives [20–23]) in the above extended versions of
the usual superfield formalism. The former restriction (in
the case of gauge theories and reparametrisation invariant
theories) leads to a logically consistent derivation [18, 19]
of the nilpotent symmetry transformations for the mat-
ter (or its analogous) fields, whereas the latter restriction,
for the case of U(1) and SU(N) gauge theories, yields
mathematically exact nilpotent symmetry transformations
for the matter (e.g. Dirac, complex scalar) fields [20–22].
One of the interesting features of these extensions is the
fact that the geometrical interpretations for the (anti-)
BRST symmetries and (anti-) BRST charges, found due
to the application of the horizontality condition alone,
remain intact (even in this augmented superfield formal-
ism). However, in all the above endeavours [13–22], one
has to exploit both restrictions (i.e. the horizontality and
the additional conditions) separately and independently
for the derivation of all the nilpotent (anti-) BRST sym-
metry transformations corresponding to all the fields of the
theory.
The purpose of our present paper is to derive the on-

shell as well as off-shell nilpotent (anti-) BRST symmetry
transformations for all the fields of a specific set of La-
grangian densities of a 4D 1-form interacting non-Abelian
gauge theory by exploiting a single gauge invariant restric-
tion on the matter superfields of the supermanifolds. In the

process, we obtain all the results of the horizontality condi-
tion and, on top of it, we obtain the (anti-) BRST symme-
try transformations for the matter (Dirac) fields without
spoiling the geometrical interpretations of the nilpotent
(anti-) BRST symmetry transformations (and the corres-
ponding generators) emerging due to the horizontality con-
dition alone. First, as a warm up exercise, we derive the
on-shell nilpotent symmetry transformations for all the
fields of a given Lagrangian density of the 4D non-Abelian
gauge theory by exploiting a gauge invariant restriction
on the chiral matter superfields of the (4, 1)-dimensional
chiral supermanifold and pinpoint its striking similarities
and the key differences with the horizontality condition.
Later on, we generalise this discussion to the general super-
manifold and derive the off-shell nilpotent (anti-) BRST
transformations for all the fields of a given non-Abelian
theory. We demonstrate that the gauge (i.e. BRST) invari-
ant restriction on the matter superfields of the supermani-
fold(s) is superior to the covariant horizontality restriction
imposed on those very supermanifold(s). To the best of
our knowledge, the BRST invariant restriction invoked in
our present paper has never been exploited in the context
of the superfield approach to the BRST formalism (ex-
cept in our earlier paper on the interacting Abelian gauge
theory [23]). Thus, our present endeavour is an important
step forward in the direction of simplifying and refining
the usual superfield approach [1–12] as well as the aug-
mented superfield formalism [13–22] applied to the BRST
formulation of the 1-form interacting (non-) Abelian gauge
theories.
Our present paper is organised as follows. In Sect. 2,

we discuss the bare essentials of the (anti-) BRST sym-
metry transformations for the 4D 1-form interacting non-
Abelian gauge theory in the Lagrangian formulation to set
up the notation and conventions. Section 3 is devoted to
the derivation of the on-shell nilpotent BRST symmetry
transformations for all the fields of the non-Abelian the-
ory by exploiting a gauge (i.e. BRST) invariant restriction
on the chiral matter superfields of the (4, 1)-dimensional
chiral super sub-manifold. The off-shell nilpotent (anti-
) BRST symmetry transformations for all the fields are
derived in Sect. 4, where (i) a general set of superfields
are considered on the general (4, 2)-dimensional super-
manifold, and (ii) a gauge (i.e. BRST) invariant restric-
tion is imposed on the matter superfields of the above
supermanifold. Finally, in Sect. 5, we make some con-
cluding remarks, point out some key differences between
the horizontality condition and our gauge invariant re-
striction and mention a few future directions for further
investigations.

2 Preliminary: nilpotent symmetry
transformations in Lagrangian formulation

Let us begin with the BRST invariant Lagrangian density
of the physical (3+1)-dimensional non-Abelian 1-form in-
teracting gauge theory in which there is a coupling between
the gauge field and the Dirac fields. This Lagrangian dens-
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ity, in the Feynman gauge, is2 [12, 24, 25]

Lb =−
1

4
Fµν ·F

µν + ψ̄ (iγµDµ−m)ψ+B · (∂µA
µ)

+
1

2
B ·B− i∂µC̄ ·D

µC , (1)

where Fµν = ∂µAν −∂νAµ+ iAµ×Aν is the field strength
tensor for the Lie algebra valued non-Abelian gauge po-
tential Aµ ≡ AaµT

a that constitutes the 1-form A(1) as fol-

lows: A(1) = dxµAaµ T
a. Here the generators T obey the

Lie algebra [T a, T b] = fabcT c for a given SU(N) group. The
structure constant fabc can be chosen to be totally anti-
symmetric in the indices a, b and c for a semisimple Lie
group SU(N) [24]. The covariant derivatives Dµψ =

(
∂µ+

iAaµT
a
)
ψ andDµC

a = ∂µC
a+ifabcAbµC

c ≡ ∂µCa+i(Aµ×
C)a are defined on thematter (quark) fieldψ and ghost field
Ca such that [Dµ, Dν ]ψ = iFµνψ and [Dµ, Dν ]C

a = i(Fµν×
C)a. Itwill be noted that these definitions forFµν agreewith
theMaurer–Cartan equationF (2) = dA(1)+iA(1)∧A(1) ≡
1
2! (dx

µ∧ dxν)Fµν , which defines the 2-formF (2); this, ulti-
mately, leads to the derivation ofFµν . In (1), theB

a are the
Nakanishi–Lautrup auxiliary fields and the anticommut-
ing (i.e. (Ca)2 = (C̄a)2 = 0, CaC̄b+ C̄bCa = 0, etc.) (anti-)
ghost fields (C̄a)Ca are required for the proof of unitarity in
the 1-form interacting non-Abelian gauge theory.3 Further-
more, the γ are the usual 4×4Diracmatrices in the physical
4DMinkowski space.
The above Lagrangian density (1) respects the follow-

ing off-shell nilpotent (s2b = 0) BRST symmetry transform-
ations (sb) [12, 24, 25]:

sbAµ =DµC , sbC =−
i

2
(C×C) , sbC̄ = iB ,

sbB = 0 , sbψ =−i(C ·T )ψ , sbψ̄ =−iψ̄(C ·T ) ,

sbFµν = i(Fµν ×C) . (2)

The on-shell (∂µD
µC = 0) nilpotent (s̃2b = 0) version of the

above nilpotent symmetry transformations (s̃b) is

s̃bAµ =DµC , s̃bC =−
i

2
(C×C) , s̃bC̄ =−i (∂µA

µ) ,

s̃bψ =−i(C ·T )ψ, s̃bψ̄ =−iψ̄(C ·T ) ,

2 We adopt here the conventions and notation such that the
Minkowskian 4D metric ηµν = diag(+1,−1,−1,−1) is flat on
the spacetime manifold. The dot product and cross product
between two non-null vectors Ra and Sa in the group space
of SU(N) are R ·S = RaSa and (R×S)a = fabcRbSc, respec-
tively. Here the Greek indices µ, ν, ρ . . . = 0, 1, 2, 3 stand for
the spacetime directions on the 4D Minkowski manifold and
the Latin indices a, b, c . . .= 1, 2, 3 . . . correspond to the SU(N)
group indices.
3 For the proof of unitarity at a given order of the perturbative
computation, in the context of a given physical process involv-
ing the gauge field and thematter (quark) fields, it turns out that
for each bosonic non-Abelian gauge field (gluon) loop diagram,
a loop diagram formed by the fermionic (anti-) ghost fields alone
is required (see, e.g. [26]).

s̃bFµν = i(Fµν ×C) , (3)

under which the Lagrangian density

L(0)b =−
1

4
Fµν ·Fµν + ψ̄ (iγ

µDµ−m)ψ

−
1

2
(∂µA

µ) · (∂ρA
ρ)− i∂µC̄ ·D

µC , (4)

changes to a total derivative (i.e. s̃bL
(0)
b = −∂µ

[(
∂ρA

ρ
)
·

DµC
]
) It is straightforward to check that (3) and (4) are

derived from (2) and (1), respectively, by the substitution
B = −

(
∂µA

µ
)
. This relation (i.e. B =−

(
∂µA

µ
)
) emerges

as the equation of motion from the Lagrangian density (1).
The off-shell nilpotent (s2ab = 0) version of the anti-

BRST (sab) transformations (with sbsab+ sabsb = 0)

sabAµ =DµC̄ , sabC̄ =−
i

2
(C̄× C̄) , sabC = iB̄ ,

sabB = i(B× C̄) , sabFµν = i(Fµν × C̄) , sabB̄ = 0 ,

sabψ =−i(C̄ ·T )ψ , sabψ̄ =−iψ̄(C̄ ·T ) (5)

are the symmetry transformations for the following equiva-
lent Lagrangians:

L(1)
B̄
=−
1

4
Fµν ·Fµν + ψ̄ (iγ

µDµ−m)ψ+B · (∂µA
µ)

+
1

2
(B ·B+ B̄ · B̄)− i∂µC̄ ·D

µC , (6)

L
(2)

B̄
=−
1

4
Fµν ·Fµν + ψ̄ (iγ

µDµ−m)ψ− B̄ · (∂µA
µ)

+
1

2
(B ·B+ B̄ · B̄)− iDµC̄ ·∂

µC , (7)

where another auxiliary field, B̄, has been introduced with
the restrictionB+ B̄ =−(C× C̄) (see, e.g. [27, 28]). It can
be checked that the anticommutativity property (sbsab+
sabsb = 0) for the (anti-) BRST transformations s(a)b is
true for any arbitrary field of the above Lagrangian densi-
ties. For the proof of this statement, one should also take
into account sbB̄ = i(B̄×C), which is not listed in (2). We
emphasise that the on-shell version of the anti-BRST sym-
metry transformations, to the best of our knowledge, does
not exist for all the above cited Lagrangian densities (see,
e.g. [12, 24, 25]).
All types of nilpotent (of order two) symmetry trans-

formations discussed and listed above can be succinctly
expressed in terms of the conserved and off-shell nilpotent
(anti-) BRST charges Qr and the on-shell nilpotent BRST
charge Q̃b, as given here:

srΣ =−i[Σ,Qr]± , r = b, ab , s̃bΣ̃ =−i
[
Σ̃, Q̃b

]

±
.

(8)

Here the (+)− signs, the subscripts to the square brack-
ets, stand for the brackets to be the (anti) commuta-
tor for the generic field Σ = Aµ, C, C̄, ψ, ψ̄, B, B̄ and
Σ̃ = Aµ, C, C̄, ψ, ψ̄ (present in the above appropriate
Lagrangian densities for the 1-form non-Abelian inter-
acting theory) being (fermionic) bosonic in nature. For
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our discussions, the explicit forms of Qr (r = b, ab) and
Q̃b are neither essential nor urgently needed, but these
can be derived by exploiting the Noether theorem (see,
e.g., [12, 24, 25] for details).

3 On-shell nilpotent BRST symmetry
transformations: superfield approach

In this section, first of all, we take the chiral superfields
B(c)µ (x, θ̄), F (c)(x, θ̄), F̄ (c)(x, θ̄), Ψ (c)(x, θ̄), Ψ̄ (c)(x, θ̄), de-
fined on the (4, 1)-dimensional super sub-manifold of the
general (4, 2)-dimensional supermanifold, as the general-
isation of the basic local fields Aµ(x), C(x), C̄(x), ψ(x),
ψ̄(x) of the Lagrangian density (4), which are defined on
the 4D ordinary spacetime manifold. The super expansion
of these chiral superfields, in terms of the above basic local
fields of the Lagrangian density (4), are as follows:

(
B(c)µ ·T

)
(x, θ̄) = (Aµ ·T )(x)+ θ̄(Rµ ·T )(x) ,

(
F (c) ·T

)
(x, θ̄) = (C ·T )(x)+ iθ̄(B1 ·T )(x) ,

(F̄ (c) ·T )(x, θ̄) = (C̄ ·T )(x)+ iθ̄(B2 ·T )(x) ,

Ψ (c)(x, θ̄) = ψ(x)+ iθ̄(b1 ·T )(x) ,

Ψ̄ (c)(x, θ̄) = ψ̄(x)+ iθ̄(b2 ·T )(x) . (9)

It is evident that, in the limit θ̄→ 0, we retrieve the ba-
sic local fields of the Lagrangian density (4). In the above
expansion, there are Lie algebra valued secondary fields
Rµ, B1, B2, b1, b2, which will be determined, in terms of
the basic local fields of the Lagrangian density (4), by the
gauge invariant restriction (see, e.g., (10) below) on the
chiral matter superfields. It will be noted that it is only
the matter fields (ψ(x), ψ̄(x) of the Lagrangian density (4)
and their chiral superfield generalisations Ψ (c)(x, θ̄) and
Ψ̄ (c)(x, θ̄) that are not Lie algebra valued. On the r.h.s. of
the above expansion, all the fields are well-behaved local
fields, because they are functions of the 4D coordinates
xµ alone. Finally, the expansions in (9) are such that the
bosonic and fermionic degrees of freedom of the local fields
do match. This is an essential requirement for the sanctity
of a supersymmetric field theory.
To derive the on-shell nilpotent BRST symmetry trans-

formations (3) for all the local fields, present in the La-
grangian density (4), we begin with the following gauge
(i.e. BRST) invariant restriction on the matter chiral
superfields of the (4, 1)-dimensional chiral super sub-
manifold:

Ψ̄ (c)(x, θ̄)D̃|(c)D̃|(c)Ψ
(c)(x, θ̄) = ψ̄(x)DDψ(x) , (10)

where we have the following:

(i) The chiral super sub-manifold is parameterised by
four bosonic spacetime coordinates xµ(µ = 0, 1, 2, 3)
and a single Grassmannian variable θ̄.

(ii) The ordinary covariant derivativeD = dxµ(∂µ+iAµ ·
T ) (on the r.h.s. of (10)) is defined on the ordinary 4D
spacetime manifold.

(iii) The chiral super covariant derivative is D̃|(c) = d̃|(c)+

iÃ
(1)
|(c). Here the individual terms, present in the

definition of the chiral super covariant derivative,
D̃|(c), are

d̃|(c) = dx
µ∂µ+ dθ̄∂θ̄ ,

Ã
(1)
|(c) = dx

µB(c)µ (x, θ̄)+ dθ̄F
(c)(x, θ̄) . (11)

(iv) The explicit computation of the r.h.s. of (10), on the
ordinary 4D spacetime manifold, leads to

ψ̄(x)DDψ(x) = iψ̄(x)F (2)ψ(x) ,

F (2) =
1

2!
(dxµ∧ dxν) (∂µAν −∂νAµ+ iAµ×Aν) ,

(12)

which is a gauge invariant quantity under the SU(N)
non-Abelian transformations, ψ → Uψ, ψ̄ → ψ̄U−1,
F (2)→ UF (2)U−1, where U ∈ SU(N).

(v) Fianally, the definitions (11) are the chiral limit
(i.e. θ̄→ 0) of the general expressions for the su-
per exterior derivative d̃ = dxµ∂µ + dθ∂θ + dθ̄∂θ̄
and super 1-form connection Ã(1) = dxµBµ(x, θ, θ̄)+
dθF̄(x, θ, θ̄)+ dθ̄F(x, θ, θ̄) defined on the general
(4, 2)-dimensional supermanifold (cf. Sect. 4 below).

It is clear from (12) that the r.h.s. of the gauge in-
variant restriction (10) yields only the coefficient of the
2-form differential (dxµ∧ dxν). The expansion of the l.h.s.
would, however, lead to the coefficients of all the possible
2-form differentials on the (4, 1)-dimensional chiral super
sub-manifold. The explicit form of the expansion, on the
l.h.s. of (10), yields

(dxµ∧dxν)Ψ̄ (c)
(
∂µ+iB

(c)
µ

)(
∂ν +iB

(c)
ν

)
Ψ (c)

+(dxµ∧dθ̄)Ψ̄ (c)
[(
∂θ̄+iF

(c)
)(
∂µ+iB

(c)
µ

)

−
(
∂µ+iB

(c)
µ

)(
∂θ̄+iF

(c)
)]
Ψ (c)

− (dθ̄∧dθ̄)Ψ̄ (c)
(
∂θ̄+iF

(c)
)(
∂θ̄+iF

(c)
)
Ψ (c) . (13)

For algebraic convenience, it is advantageous to first focus
on the explicit computation of the coefficient of (dθ̄∧ dθ̄).
This is

−(dθ̄∧ dθ̄)Ψ̄ (c)
[
i∂θ̄F

(c)−F (c)F (c)
]
Ψ (c) . (14)

It is clear from the restriction (10) that the above co-
efficient should be set equal to zero. For Ψ (c)(x, θ̄) �=
0, Ψ̄ (c)(x, θ̄) �= 0, we have the following:

∂θ̄F
(c)+

i

2
{F (c) ,F (c)}= 0 . (15)

Substituting the values from the chiral expansion (9) into
the above expression, we obtain

iB1+
i

2
(C×C)+ θ̄(C×B1) = 0

⇒B1 =−
1

2
(C×C) , (B1×C) = 0 . (16)
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It is straightforward to note that not only the condition
(B1×C) = 0 is satisfied, but we also obtain the BRST
transformation sb for the ghost field, because the expan-
sion for F (c) of (9) becomes F (c)(x, θ̄) = C+ θ̄(sbC).
We concentrate now on the explicit computation of the

coefficients of the 2-form differential (dxµ∧ dθ̄). The final
form of this expression is

i(dxµ∧ dθ̄)Ψ̄ (c)
(
∂θ̄B

(c)
µ −∂µF

(c)− i
[
B(c)µ ,F

(c)
])
Ψ (c) .

(17)

The restriction in (10) enforces the above coefficient to be
zero. This requirement leads to

(Rµ−DµC)− iθ̄[DµB1+ i(Rµ×C)] = 0 (18)

(with Ψ (c)(x, θ̄) �= 0, Ψ̄ (c)(x, θ̄) �= 0), which implies that
Rµ =DµC. Setting the θ̄ part of the above equation equal
to zero, entails the restriction Dµ

[
B1+

1
2 (C×C)

]
= 0,

which is readily satisfied due to the value of B1 quoted
in (16).
The most important piece of our present computation is

the computation of the coefficient of the 2-form differential
(dxµ∧ dxν) from the l.h.s. As it is evident from (13), with
a little bit of algebra, the first term becomes

i

2
(dxµ∧ dxν)Ψ̄ (c)

(
∂µB

(c)
ν −∂νB

(c)
µ + i

[
B(c)µ ,B

(c)
ν

])
Ψ (c) .

(19)

Substituting the explicit expressions for the expansions
in (9), we obtain the following form of the above equation:

i

2
(dxµ∧ dxν)

(
ψ̄(x)Fµνψ(x)+ iθ̄[Aµν + iBµν ]

)
,

(20)

where the explicit forms of Aµν and Bµν are

Aµν = ψ̄(x) (∂µRν −∂νRµ+ i[Aµ, Rν ]− i[Aν , Rµ])ψ(x) ,
(21)

Bµν = ψ̄(x)Fµνb1 ·T + b2 ·TFµνψ(x) . (22)

It is straightforward to note that the first term of (20)
matches with the r.h.s. of the restriction in (10). With the
substitution of Rµ = DµC, we obtain Aµν = i(Fµν ×C).
Ultimately, setting the θ̄ part of (20) equal to zero leads to
the following relationship4:

ψ̄(x)(Fµν ×C)ψ(x)+ ψ̄(x)Fµνb1 ·T + b2 ·TFµνψ(x) = 0 .
(23)

4 It will be noted that the horizontality condition, F̃
(2)
|(c) =

F (2), where F̃
(2)
|(c)
= d̃Ã

(1)
|c
+ iÃ

(1)
|c
∧ Ã

(1)
|c
and F (2) = dA(1)+

iA(1)∧A(1), leads to the computation of the l.h.s. with the re-
sult (1/2)(dxµ∧ dxν)[Fµν + iθ̄(Fµν ×C)], whereas the r.h.s. is
(1/2)(dxµ ∧ dxν)(Fµν) alone. Here one does not set the co-
efficient of the θ̄ part of the above equation equal to zero,
because that would lead to an absurd result: (Fµν ×C) = 0
(which is not the case for our present 4D 1-form interact-
ing non-Abelian gauge theory). One circumvents this problem
by stating that the kinetic energy term −(1/4)Fµν ·Fµν of

The above equation can be seen to be readily satisfied if
we choose b1 ·T =−(C ·T )ψ(x) and b2 ·T =−ψ̄(x)(C ·T ).
With the help of these values, it can be seen that the expan-
sion for the matter superfields in (9) become

Ψ (c)(x, θ̄) = ψ(x)+ θ̄(s̃bψ(x)) ,

Ψ̄ (c)(x, θ̄) = ψ̄(x)+ θ̄(s̃bψ̄(x)) . (24)

The above equation provides the geometrical interpreta-
tion for the on-shell nilpotent BRST transformation s̃b
(and for the corresponding on-shell nilpotent BRST charge

Q̃b) as the translational generator (∂/∂θ̄) along the Grass-
mannian direction θ̄ of the (4, 1)-dimensional chiral su-
permanifold (cf. (8)). In fact, the process of translation of
the chiral matter superfields Ψ (c)(x, θ̄) and Ψ̄ (c)(x, θ̄) along
the Grassmannian direction θ̄ results in the internal BRST
transformation s̃b on the corresponding local matter fields
ψ(x) and ψ̄(x) of the Lagrangian density (4) for the ordi-
nary 4D theory.
The above interpretation of the BRST transformation

s̃b (and the corresponding generator Q̃b) is valid for all the
other superfields of (9). In this connection, it will be noted
that we have already computed B1 =−(1/2)(C×C) and
Rµ =DµC from the restriction (10). However, we have not
been able to say anything about the secondary field B2,
which is present in the expansion of F̄ (c). At this junc-
ture, the equation of motion B = −

(
∂µA

µ
)
, derived from

the Lagrangian density (1), comes to our help, as we have
the freedom to choose B2 ≡ B =−

(
∂µA

µ
)
. All the above

values, finally, imply the following expansions for the chiral
superfields defined in (9):

B(c)(x, θ̄) =Aµ(x)+ θ̄(s̃bAµ(x)) ,

F (c)(x, θ̄) = C(x)+ θ̄(s̃bC(x)) ,

F̄ (c)(x, θ̄) = C̄(x)+ θ̄(s̃bC̄(x)) , (25)

which retain the geometrical interpretation of s̃b (as well
as Q̃b) as the translational generator along the Grassman-
nian direction θ̄ of the chiral supermanifold. It will be
noted that this conclusion was also drawn after (24). In
other words, the local internal BRST transformations s̃b
for the local basic fields (Aµ(x), C(x), C̄(x)) of the La-
grangian density (1) are equivalent to the translations of

the corresponding chiral superfields (B(c)µ (x, θ̄), F (c)(x, θ̄),
F̄ (c)(x, θ̄) along the Grassmannian direction θ̄ of the (4, 1)-
dimensional chiral super sub-manifold of the general (4, 2)-
dimensional supermanifold.

4 Off-shell nilpotent (anti-) BRST symmetry
transformations: superfield formalism

In this section, we shall derive the off-shell nilpotent sym-
metry transformations for all the fields of the (anti-)

the Lagrangian density remains invariant (see, e.g., [4–7]) if
Fµν → Fµν + iθ̄(Fµν ×C). It should be emphasised that this
kind of problem does not arise in our present attempt to derive
the nilpotent (anti-) BRST symmetry transformations with the
gauge invariant restriction (10).
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BRST invariant Lagrangian densities (6) and (7) by invok-
ing the same restriction on the matter superfields as quoted
in (10) but defined on the general (4, 2)-dimensional
supermanifold:

Ψ̄(x, θ, θ̄)D̃D̃Ψ(x, θ, θ̄) = ψ̄(x)DDψ(x) , (26)

where all the superfields and super covariant derivatives
are parameterised by four spacetime coordinates, xµ (with
µ = 0, 1, 2, 3)), and a pair of Grassmannian variables, θ
and θ̄. For instance, in the definition of the super covari-
ant derivative D̃ = d̃ + iÃ(1), the individual terms are as
follows:

d̃ = dxµ∂µ+ dθ∂θ+ dθ̄∂θ̄,

Ã(1) = dxµBµ(x, θ, θ̄)+ dθF̄(x, θ, θ̄)+ dθ̄F(x, θ, θ̄) .
(27)

The super expansions for the multiplet fields Bµ,F , F̄ in
terms of the basic fields Aµ, C, C̄ as well as the
secondary fields Rµ, R̄µ, Sµ, B1, B̄1, B2, B̄2, s, s̄ on the
(4, 2)-dimensional supermanifold are [4–7]

Bµ(x, θ, θ̄) =Aµ(x)+ θR̄µ(x)+ θ̄Rµ(x)+ iθθ̄Sµ(x) ,

F(x, θ, θ̄) = C(x)+ iθB̄1(x)+ iθ̄B1(x)+ iθθ̄s(x) ,

F̄(x, θ, θ̄) = C̄(x)+ iθB̄2(x)+ iθ̄B2(x)+ iθθ̄s̄(x) ,
(28)

where all the above fields are Lie algebra valued. In other
words, for the sake of brevity, we have taken the notation
Bµ = Bµ ·T,B1 =B1 ·T , etc. In the limit (θ, θ̄)→ 0, we re-
trieve all the basic local gauge and (anti-) ghost fields of
the Lagrangian densities (1), (4), (6) and (7). On the r.h.s.
of the above expansion, we can see that the fermionic and
bosonic fields (and their degrees of freedom) do match.
The super expansions for the fermionic matter superfields
(Ψ(x, θ, θ̄), Ψ̄(x, θ, θ̄)) in (26), are as follows:

Ψ(x, θ, θ̄) = ψ(x)+ iθ
(
b̄1 ·T

)
(x)+ iθ̄(b1 ·T )(x) ,

+ iθθ̄(f ·T )(x)

ψ̄(x, θ, θ̄) = ψ̄(x)+ iθ
(
b̄2 ·T

)
(x)+ iθ̄(b2 ·T )(x)

+ iθθ̄(f̄ ·T )(x) , (29)

where it should be noted that all the secondary fields are
Lie algebra valued, but the Dirac fields (and correspond-
ing superfields) are not Lie algebra valued as is the case for
these fields in the Lagrangian densities.
It is clear that the r.h.s. of (26) (as discussed ear-

lier), is equal to the SU(N) gauge invariant quantity
iψ̄(x)F (2)ψ(x), where we have the ordinary 2-form F (2) =
1
2! (dx

µ ∧ dxν)(∂µAν −∂νAµ+ iAµ×Aν). The latter con-
tains only a single wedge product of 2-form differentials
(i.e. (dxµ∧ dxν)) constituted by the spacetime variables
alone. However, the l.h.s. would produce all possible 2-form
differentials defined on the (4, 2)-dimensional supermani-
fold. To check this statement, let us first expand the l.h.s. of

the gauge invariant restriction (26), in an explicit manner,
as

+(dxµ∧ dxν)Ψ̄ [(∂µ+ iBµ)(∂ν + iBν)]Ψ

− (dθ∧ dθ)Ψ̄
[(
∂θ+ iF̄

) (
∂θ+ iF̄

)]
Ψ

− (dθ̄∧ dθ̄)Ψ̄ [(∂θ̄+ iF)(∂θ̄+ iF)]Ψ

− (dθ∧ dθ̄)Ψ̄ [(∂θ̄+ iF)(∂θ+ iF̄)+ (∂θ+ iF̄)(∂θ̄+ iF)]Ψ

− (dxµ∧ dθ)Ψ̄ [(∂µ+ iBµ)(∂θ+ iF̄)

− (∂θ+ iF̄)(∂µ+ iBµ)]Ψ

− (dxµ∧ dθ̄)Ψ̄ [(∂µ+ iBµ)(∂θ̄+ iF)

− (∂θ̄+ iF)(∂µ+ iBµ)]Ψ , (30)

where the anticommutativity property of the matter su-
perfield Ψ̄ with the Grassmannian variables θ and θ̄ has
been taken into account. For algebraic convenience, it is
useful to first compare the coefficients of the differen-
tials (dθ∧ dθ), (dθ̄∧ dθ̄) and (dθ∧ dθ̄) from the l.h.s.
and r.h.s. of the gauge invariant restriction (26). It is ob-
vious that, on the r.h.s., there are no such differentials.
Thus, we have to set the above coefficients from the l.h.s.
equal to zero. These requirements lead to the following
relationships:

∂θF̄+ iF̄F̄ = 0⇒ ∂θF̄ +
i

2
{F̄ , F̄}= 0 ,

∂θ̄F+ iFF = 0⇒ ∂θ̄F +
i

2
{F ,F}= 0 ,

∂θF+∂θ̄F̄+ i{F , F̄}= 0 , (31)

when Ψ(x, θ, θ̄) �= 0, Ψ̄(x, θ, θ̄) �= 0. The above conditions
lead to the following expressions for the secondary fields in
terms of the basic fields:

B̄2 =−
1

2
(C̄× C̄) ,

s̄=−i(B2× C̄) ,

B̄2× C̄ = 0 ,

C̄× s̄= i(B2× B̄2) ,

B1 =−
1

2
(C×C) ,

s= i(B̄1×C) ,

B1×C = 0 ,

(C× s) = i(B1× B̄1) ,

B̄1+B2 =−(C× C̄) ,

C× s̄+ s× C̄ = i(B1× B̄2− B̄1×B2) ,

s= i(C×B2−B1× C̄) ,

s̄= i(C× B̄2− B̄1× C̄) . (32)

Equation (32) shows that the explicit values of B1, s, s̄ and
B̄2 in terms of the (anti-) ghost fields and auxiliary fields
can be computed, and the rest of the above relations are
consistent. To see the latter statement clearly, we have to
set equal to zero the coefficients of the differentials (dxµ∧
dθ) and (dxµ∧ dθ̄). These conditions, for Ψ �= 0 and Ψ̄ �= 0,
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lead to

∂µF̄ −∂θBµ+ i[Bµ, F̄ ] = 0 ,

∂µF −∂θ̄Bµ+ i[Bµ ,F ] = 0 . (33)

The outcome of the above conditions is listed below

Rµ =DµC , R̄µ =DµC̄ , DµB̄2+ R̄µ× C̄ = 0 ,

Sµ =DµB2+Rµ× C̄ ≡DµB̄1+ R̄µ×C ,

DµB1+Rµ×C = 0 ,

Dµs= i
(
R̄µ×B1−Rµ× B̄1+Sµ×C

)
,

Dµs̄= i
(
R̄µ×B2−Rµ× B̄2+Sµ× C̄

)
. (34)

It can be seen explicitly that all the above relationships
are consistent with one-another. It is very interesting to
point out the fact that the restriction on the auxiliary
fields of the Lagrangian densities (6) and (7), advocated by
Curci and Farrari (i.e. B+ B̄ =−(C× C̄) ) [27, 28], auto-
matically emerges in our superfield approach if we identify
B̄1 = B̄ and B2 =B (cf. (32)).
Finally, we concentrate on the computation of the co-

efficient of (dxµ∧ dxν) from the l.h.s. of the gauge invari-
ant restriction (26). This can be explicitly expressed, after
some algebraic simplification, by

i

2
(dxµ∧ dxν)Ψ̄ (x, θ, θ̄)(∂µBν−∂νBµ

+ i[Bµ,Bν ])Ψ(x, θ, θ̄) . (35)

We have to use, in the above, the super expansion of
Bµ, Ψ, Ψ̄ from (28) and (29). Finally, we obtain the follow-
ing expression5

i

2
(dxµ∧ dxν)

[
ψ̄Fµνψ+ iθLµν + iθ̄Mµν + iθθ̄Nµν

]
,

(36)

where the expressions for Lµν ,Mµν and Nµν , in the full
blaze of glory, are

Lµν = b̄2Fµνψ− ψ̄Fµν b̄1− ψ̄(Fµν × C̄)ψ ,

Mµν = b2Fµνψ− ψ̄Fµνb1− ψ̄(Fµν ×C)ψ ,

Nµν = f̄Fµνψ+ ψ̄Fµνf − iψ̄(Fµν × C̄)b1+ iψ̄(Fµν ×C)b̄1

+ iψ̄[Fµν × (B2+C× C̄)]ψ+ ib̄2Fµνb1

+ ib̄2(Fµν ×C)ψ− ib2Fµν b̄1− ib2(Fµν × C̄)ψ .
(37)

It is straightforward to check that the first term of (36)
does match with the explicit computation of the r.h.s.

5 It should be noted that in the horizontality condition
F̃ (2) = F (2) the analogue of (35) from the l.h.s. yields i2 (dx

µ∧
dxν)[Fµν + iθ(Fµν × C̄) + iθ̄(Fµν ×C)− θθ̄(Fµν ×B + Fµν ×
C× C̄)]. But, the r.h.s. is only 12 (dx

µ∧ dxν)Fµν . One does not
set here the θ, θ̄ and θθ̄ parts equal to zero, because these lead
to absurd results. Rather, one gets rid of this problem by stat-
ing that the kinetic energy term− 14Fµν ·F

µν remains invariant

under Fµν → Fµν + iθ(Fµν × C̄)+ iθ̄(Fµν ×C)− θθ̄(Fµν ×B+
Fµν ×C× C̄) (see, e.g., [4–7]).

(i.e. iψ̄F (2)ψ) of the gauge invariant restriction (26). This
implies immediately that Lµν ,Mµν and Nµν must be
set equal to zero. It is not very difficult to check that
Lµν = 0 andMµν = 0 demand the following expressions for
b1, b2, b̄1, b̄2; namely,

b̄2 =−ψ̄(C̄ ·T ) , b̄1 =−(C̄ ·T )ψ ,

b2 =−ψ̄(C ·T ) , b1 =−(C ·T )ψ . (38)

A few points, regarding the above solutions, are in order.
First, a close look at the equation Lµν = 0 shows that b̄2
and b̄1 should be proportional to ψ̄ and ψ, respectively.
Second, to maintain the bosonic nature of b̄2 and b̄1, it is es-
sential that a single fermion should be brought in, together
with ψ̄ and ψ. Finally, b̄2 and b̄1 to be Lie algebra valued
requires that (C̄ ·T ) should be brought in for the precise
cancellation, so that we obtain Lµν = 0. Precisely similar
kinds of arguments go into the determination of the solu-
tions to the equationMµν = 0.
Finally, we would like to devote time on finding the so-

lutions to the conditionNµν = 0. First of all, it can be seen
that we can exploit the values from (38) to simplify Nµν .
For instance, it can be noted that

−iψ̄(Fµν × C̄)b1− ib2(Fµν × C̄)ψ = iψ̄{Fµν × C̄, C}ψ

≡ iψ̄(Fµν ×C× C̄)ψ ,
(39)

and counter terms (present inNµν) of exactly similar kind,

iψ̄(Fµν ×C)b̄1+ ib̄2(Fµν ×C)ψ ≡−iψ̄(Fµν ×C× C̄)ψ ,
(40)

add to zero. Out of the remaining terms, it can be seen that

ib̄2Fµνb1− ib2Fµν b̄1 =−
i

2
ψ̄(Fµν ×C× C̄)ψ . (41)

Thus, ultimately, we obtain the following surviving terms
inNµν :

f̄Fµνψ+ ψ̄Fµνf + iψ̄

(
Fµν ×

(
B2+

1

2
C× C̄

))
ψ ,

(42)

which immediately allows us to choose (with the identifica-
tion B2 =B)

f =−i

(
B+
1

2
C× C̄

)
ψ , f̄ = iψ̄

(
B+
1

2
C× C̄

)
,

(43)

so that Nµν = 0. Finally, the super expansions in (28)
and (29), after insertion of the values from (32), (34), (38)
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and (43), become

Bµ(x, θ, θ̄) =Aµ(x)+ θ(sabAµ(x))+ θ̄(sbAµ(x))

+ θθ̄(sbsabAµ(x)) ,

F(x, θ, θ̄) = C(x)+ θ(sabC(x))+ θ̄(sbC(x))

+ θθ̄(sbsabC(x)) ,

F̄(x, θ, θ̄) = C̄(x)+ θ(sabC̄(x))+ θ̄(sbC̄(x))

+ θθ̄(sbsabC̄(x)) ,

Ψ(x, θ, θ̄) = ψ(x)+ θ(sabψ(x))+ θ̄(sbψ(x))

+ θθ̄(sbsabψ(x)) ,

Ψ̄(x, θ, θ̄) = ψ̄(x)+ θ(sabψ̄(x))+ θ̄(sbψ̄(x))

+ θθ̄(sbsabψ̄(x)) . (44)

The above expansions, once again, demonstrate the ge-
ometrical interpretation of the (anti-) BRST symmetry
transformations (and of their corresponding generators
Q(a)b) as the translational generators along the Grass-
mannian directions (θ)θ̄ of the (4, 2)-dimensional gen-
eral supermanifold. Mathematically, the nilpotency prop-
erty (s2(a)b = 0, Q

2
(a)b = 0), the anticommutativity property

(sbsab+ sabsb = 0, Qb, Qab+QabQb = 0), etc., can be ex-
pressed in terms of the translational generators by

sb⇔Qb⇔ Limθ→0
∂

∂θ̄
, sab⇔Qab⇔ Limθ̄→0

∂

∂θ
,

s2b = 0⇔Q
2
b = 0⇔

(
Limθ→0

∂

∂θ̄

)2
= 0 ,

s2ab = 0⇔Q
2
ab = 0⇔

(
Limθ̄→0

∂

∂θ

)2
= 0 ,

sbsab+ sabsb = 0⇔QbQab+QabQb = 0⇔

(
Limθ̄→0

∂

∂θ

)

×

(
Limθ→0

∂

∂θ̄

)
+

(
Limθ→0

∂

∂θ̄

)(
Limθ̄→0

∂

∂θ

)
= 0 .

(45)

This establishes the geometrical interpretations for all the
mathematical properties associated with s(a)b andQ(a)b.

5 Conclusions

One of the central results of our present investigation is
the precise derivation of the full set of on-shell as well
as off-shell nilpotent (anti-) BRST symmetry transform-
ations associated with all the fields of a given 1-form 4D
interacting non-Abelian gauge theory in the superfield for-
mulation. These symmetries emerge from a single gauge
(i.e. BRST) invariant restriction (cf. (10) and (26)) on the
matter superfields defined on the appropriate superman-
ifolds. The above restriction is the bold statement that
the physical (i.e. BRST invariant) quantities should re-
main unaltered even in the presence of supersymmetric
(Grassmannian) coordinates that appear in the superfield
approach to BRST symmetries. This amounts to the re-
quirement that all the wedge products (and otherwise too)

of the Grassmannian variables, present in the definition of
the above BRST invariant quantities (cf. (10) and (26)),
should be set equal to zero, because the r.h.s. of the above
quantities are without them.
The above cited gauge (i.e. BRST) invariant quantities

originate from the key properties associated with the (su-
per) covariant derivatives and their intimate connections
with the definition of the curvature forms on the super-
manifolds. Some of the striking similarities and key differ-
ences between the horizontality condition and our gauge
invariant condition are as follows. First, both of them pri-
marily owe their origin to the (super) cohomological op-
erators d̃ and d. Second, the geometrical origin and inter-
pretations for the (anti-) BRST charges (and the nilpotent
symmetry transformations they generate) remain intact
for the validity of both the conditions on the superfields.
Third, whereas the horizontality condition is an SU(N) co-
variant restriction (because F (2)→ UF (2)U−1 where U ∈
SU(N)), the other condition, as the name suggests, is an
SU(N) gauge invariant condition. Fourth, the gauge (i.e.
BRST) invariant restrictions in (10) and (26) are basically
the generalisation of the horizontality condition itself in
which the matter fields (and the corresponding superfields)
have been brought into the picture so that these combina-
tions could become the gauge (i.e. BRST) invariant quan-
tities. Finally, there is a very crucial logical (as well as
mathematical) difference between the horizontality restric-
tion and the gauge invariant restrictions in (10) and (26).
This has been elaborated clearly and cogently in the foot-
notes before (23) and (36) of our present paper.
It is worthwhile to mention that the gauge invariant

restrictions in (10) and (26) are superior to (i) the horizon-
tality condition applied in the context of the usual super-
field formulation [1–12], and (ii) the consistent extensions
of the horizontality condition in the case of the augmented
superfield formalism [13–22]. This is due to the fact that
(i) whereas the horizontality condition (modulo some log-
ical mathematical questions) leads to the derivation of
the nilpotent symmetry transformations for the gauge and
(anti-) ghost fields, our gauge invariant restrictions yield
all the symmetry transformations for all the fields, and
(ii) whereas in the augmented superfield approach the hor-
izontality condition and the additional restriction(s) are
exploited separately and independently, one obtains all the
nilpotent (anti-) BRST symmetry transformations for all
the fields in one stroke from the gauge invariant restrictions
(exploited in (10) and (26) for the appropriately chosen
matter superfields).
The highlights of our present endeavour could be enu-

merated as follows. First of all, the restrictions in (10)
and (26) are physically as well as aesthetically more ap-
pealing, because they are BRST invariant. Second, these
gauge (i.e. BRST) invariant restrictions on the superfields
are more economical, because they produce all the nilpo-
tent symmetry transformations for all the fields of a given
1-form interacting (non-) Abelian gauge theory in one
stroke. Finally, these restrictions on the superfields have a
very sound mathematical basis at the conceptual level as
well as at the algebraic level. Thus, in our entire computa-
tion, the thread of logical coherence runs through.
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It would be interesting to extend our prescription
(e.g. (10) and (26)) to a different set of interacting systems,
so that the idea proposed in our present investigation can
be put on a firmer footing. For instance, one can check the
validity of the analogues of the restrictions (10) and (26) in
the context of the interacting U(1) gauge theory, in which
the charged complex scalar fields couple to the U(1) gauge
field. It would be more challenging to test the usefulness
and sanctity of our idea in the case of gravitational theo-
ries (see, e.g., [6, 7] for earlier work) in which the superfield
formulation has been applied to derive the nilpotent (anti-)
BRST symmetries. These are some of the immediate issues
that are presently under investigation and our results will
be reported in our forthcoming publications [29].
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